ACDA: Implementation of an augmented drug synergy prediction algorithm

3Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivation: Drug synergy prediction is approached with machine learning techniques using molecular and pharmacological data. The published Cancer Drug Atlas (CDA) predicts a synergy outcome in cell-line models from drug target information, gene mutations and the models' monotherapy drug sensitivity. We observed low performance of the CDA, 0.339, measured by Pearson correlation of predicted versus measured sensitivity on DrugComb datasets. Results: We augmented the approach CDA by applying a random forest regression and optimization via cross-validation hyper-parameter tuning and named it Augmented CDA (ACDA). We benchmarked the ACDA's performance, which is 68% higher than that of the CDA when trained and validated on the same dataset spanning 10 tissues. We compared the performance of ACDA to one of the winning methods of the DREAM Drug Combination Prediction Challenge, the performance of which was lower than ACDA in 16 out of 19 cases. We further trained the ACDA on Novartis Institutes for BioMedical Research PDX encyclopedia data and generated sensitivity predictions for PDX models. Finally, we developed a novel approach to visualize synergy-prediction data.

Cite

CITATION STYLE

APA

Domanskyi, S., Jocoy, E. L., Srivastava, A., & Bult, C. J. (2023). ACDA: Implementation of an augmented drug synergy prediction algorithm. Bioinformatics Advances, 3(1). https://doi.org/10.1093/bioadv/vbad051

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free