Objective. The proliferation and differentiation of preadipocytes are regulated by microRNAs (miRNAs), hormones, and other factors. This study aimed to investigate the effects of miR-331-3p on the proliferation and differentiation of preadipocytes in addition to fatty acid metabolism. Methods. Preadipocytes were transfected with miR-331-3p mimics, miR-NC, or miR-331-3p inhibitor to explore its effect on cell proliferation and fatty acid accumulation. Furthermore, preadipocytes were transfected with pre-miR-331-3p, pcDNA3.1(+), or miR-331-3p inhibitor to explore its effect on differentiation. Results. It was observed that miR-331-3p could inhibit preadipocytes proliferation. Furthermore, miR-331-3p was highly expressed during cellular differentiation and appeared to promote the process. In addition, dual fluorescein analysis showed that dihydrolipoamide S-succinyltransferase (DLST) is a target gene of miR-331-3p, and overexpression of miR-331-3p could regulate the metabolism of fatty acids in the citrate pyruvate cycle by targeting DLST expression. Conclusion. In summary, these findings indicated that miR-331-3p exerts contrasting effects on the processes of fat deposition.
CITATION STYLE
Chen, T., Cui, J., Ma, L., Zeng, Y., & Chen, W. (2019). The Effect of MicroRNA-331-3p on Preadipocytes Proliferation and Differentiation and Fatty Acid Accumulation in Laiwu Pigs. BioMed Research International, 2019. https://doi.org/10.1155/2019/9287804
Mendeley helps you to discover research relevant for your work.