Transition of nuclear proteins and chromatin structure in spermiogenesis of Sepia officinalis

20Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

During spermiogenesis of Sepia officinalis histones are directly substituted by a molecule of precursor protamine, which is later transformed into the protamine through a deletion of the amino terminal end. In the present work, it is shown that the pattern of spermiogenic chromatin condensation consists of a phase of "patterning" and a phase of "condensation." In the phase of patterning, three structural remodelings are produced in the chromatin structure: [somatic-like chromatin → 18 nm granules → 25 nm fibers → 44 nm fibers]. The first remodeling of the chromatin into granules of 18 nm takes place without the entrance of specific proteins in the spermiogenic nuclei. The second remodeling [granules of 18 nm → fibers of 25 nm] is due to the entrance of the precursor protamine and its interaction with the DNA-histone complex. The third remodeling [fibers of 25 nm → fibers of 44 nm] occurs simultaneously with the disappearance of histones from the chromatin. In the phase of condensation, the fibers of 44 nm coalesce among themselves to form progressively larger aggregates of chromatin. In this phase there are no substantial variations in the nuclear proteins, so that the condensation of the chromatin must respond to posttranscriptional changes of the precursor protamine (dephosphorylation, deletion of the amino-terminal end). © 2006 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Martínez-Soler, F., Kurtz, K., Ausió, J., & Chiva, M. (2007). Transition of nuclear proteins and chromatin structure in spermiogenesis of Sepia officinalis. Molecular Reproduction and Development, 74(3), 360–370. https://doi.org/10.1002/mrd.20515

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free