The clustered protocadherins (Pcdhs) comprise >50 putative synaptic recognition molecules that are related to classical cadherins and highly expressed in the nervous system. Pcdhs are organized into three gene clusters (α, β, and γ). Within the α and γ clusters, three exons encode the cytoplasmic domain for each Pcdh, making these domains identical within a cluster. Using an antibody to the Pcdh-γ constant cytoplasmic domain, we find that all interneurons in cultured hippocampal neurons express high levels of Pcdh-γs in a nonsynaptic distribution. In contrast, only 48% of pyramidal-like cells expressed appreciable levels of these molecules. In these cells, Pcdh-γs were associated with a subset of excitatory synapses in which they may mediate presynaptic to postsynaptic recognition in concert with classical cadherins. Immunogold localization in hippocampal tissue showed Pcdh-γs at some synapses, in nonsynaptic plasma membranes, and in axonal and dendritic tubulovesicular structures, indicating that they may be exchanged among synapses and intracellular compartments. Our results show that although Pcdh-γs can be synaptic molecules, synapses form lacking Pcdh-γs. Thus, Pcdh-γs and their relatives may be late additions to the classical cadherin-based synaptic adhesive scaffold; their presence in intracellular compartments suggests a role in modifying synaptic physiology or stability.
CITATION STYLE
Phillips, G. R., Tanaka, H., Frank, M., Elste, A., Fidler, L., Benson, D. L., & Colman, D. R. (2003). γ-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. Journal of Neuroscience, 23(12), 5096–5104. https://doi.org/10.1523/jneurosci.23-12-05096.2003
Mendeley helps you to discover research relevant for your work.