Towards optimal thermal distribution in magnetic hyperthermia

30Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A linear combination of spherically symmetric heat sources is shown to provide optimal stationary thermal distribution in magnetic hyperthermia. Furthermore, such spatial location of heat sources produces suitable temperature distribution in biological medium even for assemblies of magnetic nanoparticles with a moderate value of specific absorption rate (SAR), of the order of 100–150 W/g. We also demonstrate the advantage of using assemblies of spherical magnetic nanocapsules consisting of metallic iron nanoparticles covered with non magnetic shells of sufficient thickness in magnetic hyperthermia. Based on numerical simulation we optimize the size and geometric structure of biocompatible spherical capsules in order to minimize the influence of strong magneto-dipole interaction between closely spaced nanoparticles. It is shown that assembly of capsules can provide sufficiently high SAR values of the order of 250–400 W/g at moderate amplitudes H0 = 50–100 Oe and frequencies f = 100–200 kHz of alternating magnetic field, being appropriate for application in clinics.

Cite

CITATION STYLE

APA

Rytov, R. A., Bautin, V. A., & Usov, N. A. (2022). Towards optimal thermal distribution in magnetic hyperthermia. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07062-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free