Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs.
CITATION STYLE
Wang, Y., Liu, Y., & Wang, B. (2017). Effects of light on quantum phases and topological properties of two-dimensional Metal-organic frameworks. Scientific Reports, 7. https://doi.org/10.1038/srep41644
Mendeley helps you to discover research relevant for your work.