The transverse proximity effect in the z ∼ 2 Lyman α forest suggests quasi-stellar object episodic lifetimes of ∼1 Myr

54Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We look for signs of the H i transverse proximity effect in the spectra of 130 quasi-stellar object (QSO) pairs, most with transverse separations in the plane of the sky of 0.1-3 Mpc at z ∼ 2.2. We expected to see a decrease in Lyα forest H i absorption in the spectrum of background QSOs near the position of foreground QSOs. Instead, we see no change in the absorption in front of the foreground QSOs, and we see evidence for a 50 per cent increase in the absorption out to 6 Mpc behind the foreground QSOs. Further, we see no change in the H i absorption along the line-of-sight to the foreground QSOs, the normal line-of-sight proximity effect. We may account for the lack of change in the H i absorption if the effect of extra ultraviolet photons is cancelled by higher gas density around QSOs. If so, the increase in absorption behind the QSOs then suggests that the higher gas density there is not cancelled by the UV radiation from the QSOs. We can explain our observations if QSOs have had their current UV luminosities for less than approximately a million years, a time-scale that has been suggested for accretion disc instabilities and gas depletion. © 2008 RAS.

Cite

CITATION STYLE

APA

Kirkman, D., & Tytler, D. (2008). The transverse proximity effect in the z ∼ 2 Lyman α forest suggests quasi-stellar object episodic lifetimes of ∼1 Myr. Monthly Notices of the Royal Astronomical Society, 391(3), 1457–1471. https://doi.org/10.1111/j.1365-2966.2008.13994.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free