fcvalid: An R Package for Internal Validation of Probabilistic and Possibilistic Clustering

  • CEBECİ Z
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

In exploratory data analysis and machine learning, partitioning clustering is a frequently used unsupervised learning technique for finding the meaningful patterns in numeric datasets. Clustering aims to identify and classify the objects or the cases in datasets in practice. The clustering quality or the performance of a clustering algorithm is generally evaluated by using the internal validity indices. In this study, an R package named 'fcvalid' is introduced for validation of fuzzy and possibilistic clustering results. The package implements a broad collection of the internal indices which have been proposed to validate the results of fuzzy clustering algorithms. Additionally, the options to compute the generalized and extended versions of the fuzzy internal indices for validation of the possibilistic clustering are also included in the package.Bölümleyici kümeleme, keşifsel veri analizi ve makine öğrenmesinde sayısal veri kümelerindeki anlamlı örüntüleri bulmak için yaygın olarak kullanılan denetimsiz öğrenme tekniklerinden biridir. Kümeleme, pratikte veri kümesindeki nesneleri veya olguları tanımayı ve sınıflandırmayı amaçlar. Bir kümeleme analizinin kalitesi veya bir kümeleme algoritmasının performansı genellikle iç geçerlilik endeksleri kullanılarak değerlendirilir. Bu çalışmada, bulanık ve olabilirlikli kümeleme sonuçlarının doğrulanması için 'fcvalid' adında bir R paketinin işlevleri tanıtılmaktadır. Paket, bulanık kümeleme algoritmalarının sonuçlarını doğrulamak için önerilen çok sayıda iç endeksin uygulamasını içermektedir. Ayrıca, olabilirlikli kümelemenin doğrulanması için bulanık iç endekslerin genelleştirilmiş ve genişletilmiş sürümlerini hesaplama seçenekleri de pakete dâhil edilmiştir.

Cite

CITATION STYLE

APA

CEBECİ, Z. (2020). fcvalid: An R Package for Internal Validation of Probabilistic and Possibilistic Clustering. Sakarya University Journal of Computer and Information Sciences, 3(1), 11–27. https://doi.org/10.35377/saucis.03.01.664560

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free