Evaluation of fiber type and water-binder ratio influence on concrete properties

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper enumerates the experimental study on workability and strength properties of concrete containing different dosage of polypropylene fiber from 0.1% to 0.6% and 1.0% to 3.5% of steel fiber. Water-binder ratio, fiber type and fiber dosage influence on flow behaviour, compressive strength, flexural strength and brittleness ratio were analysed. Experimental results were substantiated by linear regression analysis considering 95% confidence level. Reference mixes with 0.34 and 0.36 water-binder were prepared for results comparison with polypropylene and steel fiber reinforced concretes. Test results showed comparatively higher workability reduction in polypropylene fiber reinforced concrete. Compressive strength test results of fiber reinforced concrete indicted an optimum fiber content of 0.30% of polypropylene fiber and 2.50% of steel fiber. Steel fiber reinforced concrete displayed continuous increase in flexural strength with 44.46% average increase. Brittleness ratio, which was the ratio of flexural strength and compressive strength showed maximum value of 0.24 for concrete with 3.5 % steel fiber and 0.36 w/B ratio. Linear regression analysis revealed good correlation of flow properties with w/B ratio irrespective of fiber type. Though the compressive strength had low correlation with fiber type and w/B ratio, steel fiber reinforced concrete indicated up to 0.987 coefficient of determination with flexural strength.

Cite

CITATION STYLE

APA

Shashi Kumara, S. R., Venkatesh Babu, D. L., Udayashankar, B. C., & Bharath, S. (2019). Evaluation of fiber type and water-binder ratio influence on concrete properties. International Journal of Engineering and Advanced Technology, 9(1), 6444–6450. https://doi.org/10.35940/ijeat.A2223.109119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free