Germanium microflower-on-nanostem as a high-performance lithium ion battery electrode

18Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We demonstrate a new design of Ge-based electrodes comprising three-dimensional (3-D) spherical microflowers containing crystalline nanorod networks on sturdy 1-D nanostems directly grown on a metallic current collector by facile thermal evaporation. The Ge nanorod networks were observed to self-replicate their tetrahedron structures and form a diamond cubic lattice-like inner network. After etching and subsequent carbon coating, the treated Ge nanostructures provide good electrical conductivity and are resistant to gradual deterioration, resulting in superior electrochemical performance as anode materials for LIBs, with a charge capacity retention of 96% after 100 cycles and a high specific capacity of 1360 mA h g 21 at 1 C and a high-rate capability with reversible capacities of 1080 and 850 mA h g 21 at the rates of 5 and 10 C, respectively. The improved electrochemical performance can be attributed to the fast electron transport and good strain accommodation of the carbon-filled Ge microflower-on-nanostem hybrid electrode.

Cite

CITATION STYLE

APA

Lee, G. H., Kwon, S. J., Park, K. S., Kang, J. G., Park, J. G., Lee, S., … Kim, D. W. (2014). Germanium microflower-on-nanostem as a high-performance lithium ion battery electrode. Scientific Reports, 4. https://doi.org/10.1038/srep06883

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free