Abstract
Magnetoferritin nanoparticles have been developed as high-relaxivity, functional contrast agents for MRI. Several previous techniques have relied on unloading native ferritin and re-incorporation of iron into the core, often resulting in a polydisperse sample. Here, a simplified technique is developed using commercially available horse spleen apoferritin to create monodisperse magnetoferritin. Iron oxide atoms were incorporated into the protein core via a step-wise Fe(II)Chloride addition to the protein solution under low O 2 conditions; subsequent filtration steps allow for separation of completely filled and superparamagnetic magnetoferritin from the partially filled ferritin. This method yields a monodisperse and homogenous solution of spherical particles with magnetic properties that can be used for molecular magnetic resonance imaging. With a transverse per-iron and per-particle relaxivity of 78 mM-1 sec-1 and 404,045 mM-1 sec-1, respectively, it is possible to detect ∼10 nM nanoparticle concentrations in vivo. © 2010 Wiley-Liss, Inc.
Author supplied keywords
Cite
CITATION STYLE
Clavijo Jordan, V., Caplan, M. R., & Bennett, K. M. (2010). Simplified synthesis and relaxometry of magnetoferritin for magnetic resonance imaging. Magnetic Resonance in Medicine, 64(5), 1260–1266. https://doi.org/10.1002/mrm.22526
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.