Fruit-classification model resilience under adversarial attack

10Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

An accurate and robust fruit image classifier can have a variety of real-life and industrial applications including automated pricing, intelligent sorting, and information extraction. This paper demonstrates how adversarial training can enhance the robustness of fruit image classifiers. In the past, research in deep-learning-based fruit image classification has focused solely on attaining the highest possible accuracy of the model used in the classification process. However, even the highest accuracy models are still susceptible to adversarial attacks which pose serious problems for such systems in practice. As a robust fruit classifier can only be developed with the aid of a fruit image dataset consisting of fruit images photographed in realistic settings (rather than images taken in controlled laboratory settings), a new dataset of over three thousand fruit images belonging to seven fruit classes is presented. Each image is carefully selected so that its classification poses a significant challenge for the proposed classifiers. Three Convolutional Neural Network (CNN)-based classifiers are suggested: 1) IndusNet, 2) fine-tuned VGG16, and 3) fine-tuned MobileNet. Fine-tuned VGG16 produced the best test set accuracy of 94.82% compared to the 92.32% and the 94.28% produced by the other two models, respectively. Fine-tuned MobileNet has proved to be the most efficient model with a test time of 9 ms/step compared to the test times of 28 ms/step and 29 ms/step for the other two models. The empirical evidence presented demonstrates that adversarial training enables fruit image classifiers to resist attacks crafted through the Fast Gradient Sign Method (FGSM), while simultaneously improving classifiers’ robustness against other noise forms including ‘Gaussian’, ‘Salt and pepper’ and ‘Speckle’. For example, when the amplitude of the perturbations generated through the Fast Gradient Sign Method (FGSM) was kept at 0.1, adversarial training improved the fine-tuned VGG16’s performance on adversarial images by around 18% (i.e., from 76.6% to 94.82%), while simultaneously improving the classifier’s performance on fruit images corrupted with ‘salt and pepper’ noise by around 8% (i.e., from 69.82% to 77.85%). Other reported results also follow this pattern and demonstrate the effectiveness of adversarial training as a means of enhancing the robustness of fruit image classifiers.

Cite

CITATION STYLE

APA

Siddiqi, R. (2022). Fruit-classification model resilience under adversarial attack. SN Applied Sciences, 4(1). https://doi.org/10.1007/s42452-021-04917-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free