Video Camera Identification from Sensor Pattern Noise with a Constrained ConvNet

0Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The identification of source cameras from videos, though it is a highly relevant forensic analysis topic, has been studied much less than its counterpart that uses images. In this work we propose a method to identify the source camera of a video based on camera specific noise patterns that we extract from video frames. For the extraction of noise pattern features, we propose an extended version of a constrained convolutional layer capable of processing color inputs. Our system is designed to classify individual video frames which are in turn combined by a majority vote to identify the source camera. We evaluated this approach on the benchmark VISION data set consisting of 1539 videos from 28 different cameras. To the best of our knowledge, this is the first work that addresses the challenge of video camera identification on a device level. The experiments show that our approach is very promising, achieving up to 93.1% accuracy while being robust to the WhatsApp and YouTube compression techniques. This work is part of the EU-funded project 4NSEEK focused on forensics against child sexual abuse.

Cite

CITATION STYLE

APA

Timmerman, D., Bennabhaktula, G. S., Alegre, E., & Azzopardi, G. (2021). Video Camera Identification from Sensor Pattern Noise with a Constrained ConvNet. In International Conference on Pattern Recognition Applications and Methods (Vol. 1, pp. 417–425). Science and Technology Publications, Lda. https://doi.org/10.5220/0010246804170425

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free