From Data to Causes I: Building A General Cross-Lagged Panel Model (GCLM)

288Citations
Citations of this article
355Readers
Mendeley users who have this article in their library.

Your institution provides access to this article.

Abstract

This is the first paper in a series of two that synthesizes, compares, and extends methods for causal inference with longitudinal panel data in a structural equation modeling (SEM) framework. Starting with a cross-lagged approach, this paper builds a general cross-lagged panel model (GCLM) with parameters to account for stable factors while increasing the range of dynamic processes that can be modeled. We illustrate the GCLM by examining the relationship between national income and subjective well-being (SWB), showing how to examine hypotheses about short-run (via Granger-Sims tests) versus long-run effects (via impulse responses). When controlling for stable factors, we find no short-run or long-run effects among these variables, showing national SWB to be relatively stable, whereas income is less so. Our second paper addresses the differences between the GCLM and other methods. Online Supplementary Materials offer an Excel file automating GCLM input for Mplus (with an example also for Lavaan in R) and analyses using additional data sets and all program input/output. We also offer an introductory GCLM presentation at https://youtu.be/tHnnaRNPbXs. We conclude with a discussion of issues surrounding causal inference.

Cite

CITATION STYLE

APA

Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., … Diener, E. (2020). From Data to Causes I: Building A General Cross-Lagged Panel Model (GCLM). Organizational Research Methods, 23(4), 651–687. https://doi.org/10.1177/1094428119847278

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free