Spatially modulated instabilities of geometries with hyperscaling violation

25Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We perform a study of possible instabilities of the infrared AdS 2 ×{{\mathbb{R}}2}region of solutions to Einstein-Maxwell- dilaton systems which exhibit an intermediate regime of hyperscaling violation and Lifshitz scaling. Focusing on solutions that are magnetically charged, we probe the response of the system to spatially modulated fluctuations, and identify regions of parameter space in which the infrared AdS 2 geometry is unstable to perturbations. The conditions for the existence of instabilities translate to restrictions on the structure of the gauge kinetic function and scalar potential. In turn, these can lead to restrictions on the dynamical critical exponent z and on the amount of hyperscaling violation θ. Our analysis thus provides further evidence for the notion that the true ground state of 'scaling' solutions with hyperscaling violation may be spatially modulated phases. © 2014 SISSA.

Cite

CITATION STYLE

APA

Cremonini, S., & Sinkovics, A. (2014). Spatially modulated instabilities of geometries with hyperscaling violation. Journal of High Energy Physics, 2014(1). https://doi.org/10.1007/JHEP01(2014)099

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free