Natural ideal operators in inductive logic programming

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present in this paper the original notion of natural relation, a quasi order that extends the idea of generality order: it allows the sound and dynamic pruning of hypotheses that do not satisfy a property, be it completeness or correctness with respect to the training examples, or hypothesis language restriction. Natural relations for conjunctions of such properties are characterized. Learning operators that satisfy these complex natural relations allow pruning with respect to this set of properties to take place before inappropriate hypotheses are generated. Once the natural relation is defined that optimally prunes the search space with respect to a set of properties, we discuss the existence of ideal operators for the search space ordered by this natural relation. We have adapted the results from [vdLNC94a] on the non-existence of ideal operators to those complex natural relations. We prove those nonexistence conditions do not apply to some of those natural relations, thus overcoming the previous negative results about ideal operators for space ordered by θ-subsumption only.

Cite

CITATION STYLE

APA

Torre, F., & Rouveirol, C. (1997). Natural ideal operators in inductive logic programming. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 1224, pp. 274–289). Springer Verlag. https://doi.org/10.1007/3-540-62858-4_92

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free