Abstract
In pressurized glass-forming systems, the apparent (changeable) activation volume Va(P) is the key property governing the previtreous behavior of the structural relaxation time (τ) or viscosity (η), following the Super-Barus behavior: τ(P),η(P)∝exp(Va(P)/RT), T = const. It is usually assumed that Va(P) = V#(P), where V#(P)=RTdlnτ(P)/dP or V#(P)=RTdlnη(P)/dP. This report shows that Va(P) ≪ V#(P) for P → Pg, where Pg denotes the glass pressure, and the magnitude V#(P) is coupled to the pressure steepness index (the apparent fragility). V#(P) and Va(P) coincides only for the basic Barus dynamics, where Va(P) = Va = const in the given pressure domain, or for P → 0. The simple and non-biased way of determining Va(P) and the relation for its parameterization are proposed. The derived relation resembles Murnaghan - O’Connel equation, applied in deep Earth studies. It also offers a possibility of estimating the pressure and volume at the absolute stability limit. The application of the methodology is shown for diisobutyl phthalate (DIIP, low-molecular-weight liquid), isooctyloxycyanobiphenyl (8*OCB, liquid crystal) and bisphenol A/epichlorohydrin (EPON 828, epoxy resin), respectively.
Cite
CITATION STYLE
Drozd-Rzoska, A. (2019). Activation volume in superpressed glass-formers. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49848-w
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.