Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies

23Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Many insects are chemically defended against predatory vertebrates and invertebrates. Nevertheless, our understanding of the evolution and diversity of insect defenses remains limited, since most studies have focused on visual signaling of defenses against birds, thereby implicitly underestimating the impact of insectivorous insects. In the larvae of sawflies in the family Tenthredinidae (Hymenoptera), which feed on various plants and show diverse lifestyles, two distinct defensive strategies are found: easy bleeding of deterrent hemolymph, and emission of volatiles by ventral glands. Here, we used phylogenetic information to identify phylogenetic correlations among various ecological and defensive traits in order to estimate the relative importance of avian versus invertebrate predation. Results: The mapping of 12 ecological and defensive traits on phylogenetic trees inferred from DNA sequences reveals the discrete distribution of easy bleeding that occurs, among others, in the genus Athalia and the tribe Phymatocerini. By contrast, occurrence of ventral glands is restricted to the monophyletic subfamily Nematinae, which are never easy bleeders. Both strategies are especially effective towards insectivorous insects such as ants, while only Nematinae species are frequently brightly colored and truly gregarious. Among ten tests of phylogenetic correlation between traits, only a few are significant. None of these involves morphological traits enhancing visual signals, but easy bleeding is associated with the absence of defensive body movements and with toxins occurring in the host plant. Easy bleeding functions through a combination of attributes, which is corroborated by an independent contrasts test indicating a statistically significant negative correlation between species-level integument mechanical resistance and hemolymph feeding deterrence against ants. Conclusions: Our analyses evidence a repeated occurrence of easy bleeding, and no phylogenetic correlation including specific visual signals is significant. We conclude that the evolution of chemically-based defenses in tenthredinids may have been driven by invertebrate as much as by avian predation. The clear-cut visual signaling often encountered in the Nematinae would be linked to differential trends of habitat use by prey and predators. Further studies on (prey) insect groups should include visual signals and other traits, as well as several groups of natural enemies, to better interpret their relative significance and to refine our understanding of insect chemical defenses. © 2013 Boevé et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Boevé, J. L., Blank, S. M., Meijer, G., & Nyman, T. (2013). Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies. BMC Evolutionary Biology, 13(1). https://doi.org/10.1186/1471-2148-13-198

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free