Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against breast cancers

20Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Background We previously demonstrated potent antitumor activity against human breast cancer xenografts using photodynamic therapy (PDT) targeting a novel tumor-specific photosensitizer (HS201), which binds heat shock protein 90 (HS201-PDT). However, induction of systemic antitumor immunity by HS201-PDT alone or by the combination strategy with immune checkpoint blockade has yet to be determined. Methods Using unilateral and bilateral implantation models of syngeneic breast tumors (E0771, MM3MGHER2, and JC-HER3) in mice, we assessed whether HS201-PDT could induce local and systemic antitumor immunity. In an attempt to achieve a stronger abscopal effect for distant tumors, the combination strategy with anti-PD-L1 antibody was tested. Tumor-infiltrating leukocytes were analyzed by single cell RNA-sequencing and receptor-ligand interactome analysis to characterize in more detailed the mechanisms of action of the treatment and key signaling pathways involved. Results HS201-PDT demonstrated greater tumor control and survival in immune competent mice than in immunocompromised mice, suggesting the role of induced antitumor immunity; however, survival was modest and an abscopal effect on distant implanted tumor was weak. A combination of HS201-PDT with anti-PD-L1 antibody demonstrated the greatest antigen-specific immune response, tumor growth suppression, prolonged mouse survival time and abscopal effect. The most significant increase of intratumoral, activated CD8+T cells and decrease of exhausted CD8+T cells occurred following combination treatment compared with HS201-PDT monotherapy. Receptor-ligand interactome analysis showed marked enhancement of several pathways, such as CXCL, GALECTIN, GITRL, PECAM1 and NOTCH, associated with CD8+T cell activation in the combination group. Notably, the expression of the CXCR3 gene signature was the highest in the combination group, possibly explaining the enhanced tumor infiltration by T cells. Conclusions The increased antitumor activity and upregulated CXCR3 gene signature induced by the combination of anti-PD-L1 antibody with HS201-PDT warrants the clinical testing of HS201-PDT combined with PD-1/PD-L1 blockade in patients with breast cancer, and the use of the CXCR3 gene signature as a biomarker.

Cite

CITATION STYLE

APA

Kaneko, K., Acharya, C. R., Nagata, H., Yang, X., Hartman, Z. C., Hobeika, A., … Osada, T. (2022). Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against breast cancers. Journal for ImmunoTherapy of Cancer, 10(9). https://doi.org/10.1136/jitc-2022-004793

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free