Texture image classification with discriminative neural networks

25Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Texture provides an important cue for many computer vision applications, and texture image classification has been an active research area over the past years. Recently, deep learning techniques using convolutional neural networks (CNN) have emerged as the state-of-the-art: CNN-based features provide a significant performance improvement over previous handcrafted features. In this study, we demonstrate that we can further improve the discriminative power of CNN-based features and achieve more accurate classification of texture images. In particular, we have designed a discriminative neural network-based feature transformation (NFT) method, with which the CNN-based features are transformed to lower dimensionality descriptors based on an ensemble of neural networks optimized for the classification objective. For evaluation, we used three standard benchmark datasets (KTH-TIPS2, FMD, and DTD) for texture image classification. Our experimental results show enhanced classification performance over the state-of-the-art.

Cite

CITATION STYLE

APA

Song, Y., Li, Q., Feng, D., Zou, J. J., & Cai, W. (2016). Texture image classification with discriminative neural networks. Computational Visual Media, 2(4), 367–377. https://doi.org/10.1007/s41095-016-0060-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free