Mechanical and tribological characteristics of aluminium 2618 matrix composite reinforced with boron carbide

26Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Aluminium-based alloys are mainly used for bearing and automotive applications, resulting in more wear and tear of the material. Boron Carbide (B4C), hard ceramic materials used as reinforcement in Al2618 matrix material, was fabricated using the stir casting method. The presence and distribution of the B4C particles were confirmed by X-ray diffractometer (XRD) and Scanning Electron Microscopy (SEM). Taguchi’s design of experimental approach was employed to study the wear characteristics using the L27 orthogonal array. Optimization of parameters like applied load (20, 30, and 40 N), sliding distance (400, 600, and 800 m), and sliding speed (1.25, 2.51, and 3.76 m/s) were done using Signal-to-Noise ratio analysis and Analysis of Variance (ANOVA). Results revealed that speed (46.77%) had more influence on wear behavior, followed by sliding distance (34.74%) and load (9.81%). SEM images of the worn-out composite specimens exhibited an adhesive type of wear mechanism with deep grooves from hard B4C particles.

Cite

CITATION STYLE

APA

Chikkegouda, S. P., Gurudath, B., Sharath, B. N., Karthik, S., & Mahale, R. S. (2022). Mechanical and tribological characteristics of aluminium 2618 matrix composite reinforced with boron carbide. Biointerface Research in Applied Chemistry, 12(4), 4544–4556. https://doi.org/10.33263/BRIAC124.45444556

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free