Device Model for Methylammonium Lead Iodide Perovskite With Experimentally Validated Ion Dynamics

21Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Being based on mixed ionic-electronic semiconductors, the operation of perovskite solar cells depends on many parameters. To develop an experimentally validated numerical device model, it is therefore necessary to isolate individual physical phenomena. To this end, the dynamics of ion motion in lead halide perovskites is investigated by measuring impedance spectra and the electric displacement as a function of frequency in dark. The displacement response is fully reproduced by a numerical device model that combines electronic and ionic conduction. For a quantitative description of the displacement, it is critical to consider the frequency-dependent apparent dielectric constant, the ion concentration and the ion diffusion coefficient. The numerical simulations enable to quantify the effect of ion motion and voltage scan speed on the electric field distribution in MAPbI3 based devices, laying the foundations for an experimentally validated perovskite device model.

Author supplied keywords

Cite

CITATION STYLE

APA

Sajedi Alvar, M., Blom, P. W. M., & Wetzelaer, G. J. A. H. (2020). Device Model for Methylammonium Lead Iodide Perovskite With Experimentally Validated Ion Dynamics. Advanced Electronic Materials, 6(6). https://doi.org/10.1002/aelm.201900935

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free