Modelos estatísticos para geração de plantas de valores genéricos em áreas urbanas

  • Faria Filho R
  • Brito J
  • Gonçalves R
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Resumo O cálculo do Imposto sobre a Propriedade Predial e Territorial Urbana (IPTU) tem como base o valor venal do imóvel, geralmente estabelecido na planta de valores genéricos (PVG) dos municípios. No entanto, existem municípios, principalmente os de pequeno porte, que não realizam a cobrança do IPTU. Esse fato se deve à desatualização do cadastro imobiliário e à falta de metodologia robusta e fácil para determinação do valor venal, de pessoal capacitado e de recursos financeiros. Nesse sentido, o objetivo deste trabalho foi aplicar a combinação do modelo de regressão espacial e a modelagem dos fatores de localização para determinar o valor venal de cada imóvel de um município de pequeno porte para a geração da planta de valores genéricos. O estudo foi desenvolvido na cidade de São Gotardo/MG. Foram utilizadas 184 amostras de avaliações de imóveis residenciais realizadas pela Caixa Econômica Federal no período de 2012 a 2013. A fim de analisar a aplicação dos modelos espaciais, foram gerados quatro modelos de regressão múltipla a partir das variáveis dependentes logaritmo do valor total e logaritmo do valor unitário e das variáveis independentes relativas às características construtivas das edificações, conforme estudos anteriores, bem como foram testadas variáveis adicionais referentes às características do terreno. Para os modelos que apresentaram dependência espacial no erro, foi gerado o modelo espacial do erro para determinar uma nova variável homogeneizada que englobasse o fator localização, (VH), a qual foi utilizada como variável independente de um novo modelo de regressão linear. A escolha do melhor modelo de regressão se deu a partir da análise do menor Coeficiente de Dispersão, bem como pelo atendimento aos pressupostos do modelo de regressão linear. O modelo com a variável dependente logaritmo do valor unitário e a variável homogeneizada como independente foi o que apresentou melhor resultado, atendendo a todos pressupostos. Dessa forma, foi possível verificar que a variável homogeneizada melhora a performance do modelo de regressão linear, visto que insere o fator localização dos imóveis nas variáveis independentes.Abstract The calculation of the Tax on Land and Urban Property (IPTU) is based on property market value, usually established in the city plant of general values (PVG). However, there are municipalities, especially small ones that do not collect IPTU taxes. This is due to outdated real state register, in addition to the lack of qualified personnel, financial resources and robust and easy methodology to determine real state market value. Therefore, this work aims to combine the spatial regression model and location factor modeling to determine the market value of each property in a small city for the generation of the table of general values (PVG). The study was conducted in the city of São Gotardo/MG. One hundred and eighty-four samples of residential real state assessments made by Caixa Econômica Federal in 2012 and 2013 were used. Aiming to analyze the application of spatial models, four multiple regression models were generated based on the logarithm dependent variables on the total and unit values, and the independent variables related to the construction characteristics of the constructions, according to previous studies. Additional variables related to the land characteristics were also tested. For the models with spatial error dependence, a spatial error model was generated to determine a new homogenized variable encompassing the location factor (VH), which was used as an independent variable on a new linear regression model. The best regression model was selected based on the compliance of assumptions of the linear regression model and the analysis of the lowest Dispersion Coefficient. The model with the logarithm dependent variable on the unit values and the homogenized variable as independent, showed the best results and observed all the assumptions. Thus, it was demonstrated that the homogenized variable improves the performance of the linear regression model, since it includes the property location factor in the independent variables.

Cite

CITATION STYLE

APA

Faria Filho, R. F., Brito, J. L. S., & Gonçalves, R. M. L. (2016). Modelos estatísticos para geração de plantas de valores genéricos em áreas urbanas. Gestão & Produção, 24(2), 279–294. https://doi.org/10.1590/0104-530x2482-15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free