Carbon-deficient Red Giants

  • Bond H
9Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Carbon-deficient red giants (CDRGs) are a rare class of peculiar red giants, also called “weak G-band” or “weak CH” stars. Their atmospheric compositions show depleted carbon, a low isotopic ratio, and an overabundance of nitrogen, indicating that the material at the surface has undergone CN-cycle hydrogen burning. I present Strömgren uvby photometry of nearly all known CDRGs. Barium stars, having an enhanced carbon abundance, exhibit the “Bond–Neff effect”—a broad depression in their energy distributions at ∼4000 Å, recently confirmed to be due to the CH molecule. This gives Ba ii stars unusually low Strömgren c 1 photometric indices. I show that CDRGs, lacking CH absorption, exhibit an “anti-Bond–Neff effect”—higher c 1 indices than normal red giants. Using precise parallaxes from Gaia DR2, I plot CDRGs in the color–magnitude diagram (CMD) and compare them with theoretical evolution tracks. Most CDRGs lie in a fairly tight clump in the CMD, indicating initial masses in the range ∼2– , if they have evolved as single stars. It is unclear whether they are stars that have just reached the base of the red-giant branch and the first dredge-up of CN-processed material, or are more highly evolved helium-burning stars in the red-giant clump. About 10% of CDRGs have higher masses of ∼4– , and exhibit unusually high rotational velocities. I show that CDRGs lie at systematically larger distances from the Galactic plane than normal giants, possibly indicating a role of binary mass transfer and mergers. CDRGs continue to present a major puzzle for our understanding of stellar evolution.

Cite

CITATION STYLE

APA

Bond, H. E. (2019). Carbon-deficient Red Giants. The Astrophysical Journal, 887(1), 12. https://doi.org/10.3847/1538-4357/ab4e13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free