Life cycle assessment of cheese and whey production in the USA

101Citations
Citations of this article
352Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose: A life cycle assessment was conducted to determine a baseline for environmental impacts of cheddar and mozzarella cheese consumption. Product loss/waste, as well as consumer transport and storage, is included. The study scope was from cradle-to-grave with particular emphasis on unit operations under the control of typical cheese-processing plants. Methods: SimaPro© 7.3 (PRé Consultants, The Netherlands, 2013) was used as the primary modeling software. The ecoinvent life cycle inventory database was used for background unit processes (Frischknecht and Rebitzer, J Cleaner Prod 13(13-14):1337-1343, 2005), modified to incorporate US electricity (EarthShift 2012). Operational data was collected from 17 cheese-manufacturing plants representing 24 % of mozzarella production and 38 % of cheddar production in the USA. Incoming raw milk, cream, or dry milk solids were allocated to coproducts by mass of milk solids. Plant-level engineering assessments of allocation fractions were adopted for major inputs such as electricity, natural gas, and chemicals. Revenue-based allocation was applied for the remaining in-plant processes. Results and discussion: Greenhouse gas (GHG) emissions are of significant interest. For cheddar, as sold at retail (63.2 % milk solids), the carbon footprint using the IPCC 2007 factors is 8.60 kg CO2e/kg cheese consumed with a 95 % confidence interval (CI) of 5.86-12.2 kg CO2e/kg. For mozzarella, as sold at retail (51.4 % milk solids), the carbon footprint is 7.28 kg CO 2e/kg mozzarella consumed, with a 95 % CI of 5.13-9.89 kg CO 2e/kg. Normalization of the results based on the IMPACT 2002+ life cycle impact assessment (LCIA) framework suggests that nutrient emissions from both the farm and manufacturing facility wastewater treatment represent the most significant relative impacts across multiple environmental midpoint indicators. Raw milk is the major contributor to most impact categories; thus, efforts to reduce milk/cheese loss across the supply chain are important. Conclusions: On-farm mitigation efforts around enteric methane, manure management, phosphorus and nitrogen runoff, and pesticides used on crops and livestock can also significantly reduce impacts. Water-related impacts such as depletion and eutrophication can be considered resource management issues - specifically of water quantity and nutrients. Thus, all opportunities for water conservation should be evaluated, and cheese manufacturers, while not having direct control over crop irrigation, the largest water consumption activity, can investigate the water use efficiency of the milk they procure. The regionalized normalization, based on annual US per capita cheese consumption, showed that eutrophication represents the largest relative impact driven by phosphorus runoff from agricultural fields and emissions associated with whey-processing wastewater. Therefore, incorporating best practices around phosphorous and nitrogen management could yield improvements. © 2013 The Author(s).

Cite

CITATION STYLE

APA

Kim, D., Thoma, G., Nutter, D., Milani, F., Ulrich, R., & Norris, G. (2013). Life cycle assessment of cheese and whey production in the USA. International Journal of Life Cycle Assessment, 18(5), 1019–1035. https://doi.org/10.1007/s11367-013-0553-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free