What is the dimension of spacetime? We address this question in the context of the AdS/CFT Correspondence. We give a prescription for computing the number of large bulk dimensions, D, from strongly-coupled CFTd data, where “large” means parametrically of order the AdS scale. The idea is that unitarity of 1-loop AdS amplitudes, dual to non-planar CFT correlators, fixes D in terms of tree-level data. We make this observation rigorous by deriving a positive-definite sum rule for the 1-loop double-discontinuity in the flat space/bulk-point limit. This enables us to prove an array of AdS/CFT folklore, and to infer new properties of large N CFTs at strong coupling that ensure consistency of emergent large extra dimensions with string/M-theory. We discover an OPE universality at the string scale: to leading order in large N, heavy-heavy-light three-point functions, with heavy operators that are parametrically lighter than a power of N, are linear in the heavy conformal dimension. We explore its consequences for supersymmetric CFTs and explain how emergent large extra dimensions relate to a Sublattice Weak Gravity Conjecture for CFTs. Lastly, we conjecture, building on a claim of [1], that any CFT with large higher-spin gap and no global symmetries has a holographic hierarchy: D = d + 1.
CITATION STYLE
Alday, L. F., & Perlmutter, E. (2019). Growing extra dimensions in AdS/CFT. Journal of High Energy Physics, 2019(8). https://doi.org/10.1007/JHEP08(2019)084
Mendeley helps you to discover research relevant for your work.