Abstract
Tissue-resident memory CD8 T (T RM ) cells defend against microbial reinfections at mucosal barriers; determinants driving durable T RM cell responses in non-mucosal tissues, which often harbor opportunistic persistent pathogens, are unknown. JC polyomavirus (JCPyV) is a ubiquitous constituent of the human virome. With altered immunological status, JCPyV can cause the oft-fatal brain demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV is a human-only pathogen. Using the mouse polyomavirus (MuPyV) encephalitis model, we demonstrate that CD4 T cells regulate development of functional antiviral brain-resident CD8 T cells (bT RM ) and renders their maintenance refractory to systemic CD8 T cell depletion. Acquired CD4 T cell deficiency, modeled by delaying systemic CD4 T cell depletion until MuPyV-specific CD8 T cells have infiltrated the brain, impacted the stability of CD8 bT RM , impaired their effector response to reinfection, and rendered their maintenance dependent on circulating CD8 T cells. This dependence of CD8 bT RM differentiation on CD4 T cells was found to extend to encephalitis caused by vesicular stomatitis virus. Together, these findings reveal an intimate association between CD4 T cells and homeostasis of functional bT RM to CNS viral infection.
Cite
CITATION STYLE
Mockus, T. E., Shwetank, Lauver, M. D., Ren, H. M., Netherby, C. S., Salameh, T., … Lukacher, A. E. (2018). CD4 T cells control development and maintenance of brain-resident CD8 T cells during polyomavirus infection. PLoS Pathogens, 14(10). https://doi.org/10.1371/journal.ppat.1007365
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.