Mathematical Modeling of Efficiency Evaluation of Double-Pass Parallel Flow Solar Air Heater

55Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

To investigate the influencing range and optimize values of different operational and system parameters on the double-pass parallel flow solar air heater’s (DPPFSAH) thermal, effective, and exergetic efficiencies, an iterative method was used to analyze the governing energy equations using a theoretical model written in MATLAB based on the Nusselt number (Nu) and friction factor (f) correlations developed in the work performed earlier. A comparison between double-pass and single-pass SAHs for mathematical and experimental outcomes was conducted, and the results were found to be fairly consistent. According to the thermo-hydraulic performance indicators, similar to single-pass SAHs, perforated multi-V rib-roughened DPPFSAHs achieve optimum thermal performance for lower Reynolds numbers, which does not change much as the Reynolds number increases above 18,000. This finding can be taken into account when designing any DPPFSAH.

Cite

CITATION STYLE

APA

Singh, V. P., Jain, S., Karn, A., Kumar, A., Dwivedi, G., Meena, C. S., & Cozzolino, R. (2022). Mathematical Modeling of Efficiency Evaluation of Double-Pass Parallel Flow Solar Air Heater. Sustainability (Switzerland), 14(17). https://doi.org/10.3390/su141710535

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free