Stability analysis of the Biot/squirt models for wave propagation in saturated porous media

15Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This work is concerned with the Biot/squirt (BISQ) models for wave propagation in saturated porous media. We show that the models allow exponentially exploding solutions, as time goes to infinity, when the characteristic squirt-flow coefficient is negative or has a non-zero imaginary part. We also show that the squirt-flow coefficient does have non-zero imaginary parts for some experimental parameters or for low angular frequencies. Because the models are linear, the existence of such exploding solutions indicates instability of the BISQ models. This result, for the first time, provides a theoretical explanation of the well-known empirical observation that BISQ model is not reliable (not consistent with Gassmann's formula) at low frequencies. It calls on a reconsideration of the widely used BISQ theory. On the other hand, we demonstrate that the 3-D isotropic BISQ model is stable when the squirt-flow coefficient is positive. In particular, the original Biot model is unconditionally stable where the squirt-flow coefficient is 1.

Cite

CITATION STYLE

APA

Liu, J., & Yong, W. A. (2016). Stability analysis of the Biot/squirt models for wave propagation in saturated porous media. Geophysical Journal International, 204(1), 535–543. https://doi.org/10.1093/gji/ggv463

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free