Abstract
Photolysis rate constant of HNO 3 on the surface (HNO 3(s) ) has been found to be enhanced by 1–4 orders of magnitude from that of gaseous HNO 3 , with HONO and NO 2 as the main products. Such Re-NOx-ification pathway extends the apparent lifetime of reactive nitrogen species and modifies the atmospheric oxidative capacity along its long-rang transport. Despite of its importance, the detailed kinetics and mechanisms of HNO 3(s) photolysis are still not clear. Surface film of HNO 3 and organic compounds is ubiquitous in the environment and imposes matrix effect on HNO 3(s) photolysis. Here we studied photolysis of HNO 3 on Pyrex glass in a photochemical flow reactor over a wide range of HNO 3 surface density (D HNO3 ) with or without the presence of model organic compounds. The photolysis rate constant of HNO 3(s) varied with D HNO3 and surface-catalysis mechanism was proposed. Organic compounds further enhance the photolysis rate constant by up to one order of magnitude via both photosensitization and H-donating reaction. The H-donating reaction enhances as well the secondary HONO yield from reaction between the primary product NO 2 and adjacent H-donor, and thus increases the HONO/NO 2 production ratio. Finally, detailed mechanisms involving surface-catalyisis, photosensitization and H-donating reactions was integrated.
Cite
CITATION STYLE
Ye, C., Zhang, N., Gao, H., & Zhou, X. (2019). Matrix effect on surface-catalyzed photolysis of nitric acid. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-37973-x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.