Vehicular ad-hoc networks (VANETs), which are networks of communicating vehicles, provide the essential infrastructure for intelligent transportation systems. Thanks to the significant research efforts to develop the technological background of VANETs, intelligent transportation systems are nowadays becoming a reality. The emergence of VANETs has triggered a lot of research aimed at developing mathematical models in order to gain insight into the dynamics of the communication and to support network planning. In this paper we consider the message propagation speed on the highway, where messages can be exchanged not only between the vehicles, but also between the road-side infrastructure and the vehicles as well. In our scenario, alert messages are generated by a static message source constantly. Relying on an appropriately defined Markov renewal process, we characterize the message passing process between the road-side units, derive the speed of the message propagation, and provide the transient distribution of the distance where the message is available. Our results make it possible to determine the optimal distance between road-side units (RSUs) and to calculate the effect of speed restrictions on message propagation.
CITATION STYLE
Mahmood, D. A., & Horváth, G. (2020). Analysis of the message propagation speed in VANET with disconnected RSUs. Mathematics, 8(5). https://doi.org/10.3390/MATH8050782
Mendeley helps you to discover research relevant for your work.