Uncovering hidden and complex relations of pandemic dynamics using an AI driven system

12Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The COVID-19 pandemic continues to challenge healthcare systems globally, necessitating advanced tools for clinical decision support. Amidst the complexity of COVID-19 symptomatology and disease severity prediction, there is a critical need for robust decision support systems to aid healthcare professionals in timely and informed decision-making. In response to this pressing demand, we introduce BayesCovid, a novel decision support system integrating Bayesian network models and deep learning techniques. BayesCovid automates data preprocessing and leverages advanced computational methods to unravel intricate patterns in COVID-19 symptom dynamics. By combining Bayesian networks and Bayesian deep learning models, BayesCovid offers a comprehensive solution for uncovering hidden relationships between symptoms and predicting disease severity. Experimental validation demonstrates BayesCovid ’s high prediction accuracy (83.52–98.97%). Our work represents a significant stride in addressing the urgent need for clinical decision support systems tailored to the complexities of managing COVID-19 cases. By providing healthcare professionals with actionable insights derived from sophisticated computational analysis, BayesCovid aims to enhance clinical decision-making, optimise resource allocation, and improve patient outcomes in the ongoing battle against the COVID-19 pandemic.

Cite

CITATION STYLE

APA

Demirbaga, U., Kaur, N., & Aujla, G. S. (2024). Uncovering hidden and complex relations of pandemic dynamics using an AI driven system. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-65845-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free