To dissect the action mechanism of reveromycin A (RM-A), a G(1)-specific inhibitor, a Saccharomyces cerevisiae dominant mutant specifically resistant to RM-A, was isolated from a strain in which the genes implicated in nonspecific multidrug resistance had been deleted. The mutant gene (YRR2-1) responsible for the resistance was identified as an allele of the ILS1 gene encoding tRNA(Ile) synthetase (IleRS). The activity of IleRS, but not several other aminoacyl-tRNA synthetases examined in wild type cell extract, was highly sensitive to RM-A (IC(50) = 8 ng/ml). The IleRS activity of the YRR2-1 mutant was 4-fold more resistant to the inhibitor compared with that of wild type. The mutation IleRS(N660D), near the KMSKS consensus sequence commonly found in the class I aminoacyl transferases, was found to be responsible for RM-A resistance. Moreover, overexpression of the ILS1 gene from a high-copy plasmid conferred RM-A resistance. These results indicated that IleRS is a target of RM-A in vivo. A defect of the GCN2 gene led to decreased RM-A resistance. IleRS inhibition by RM-A led to transcriptional activation of the ILS1 gene via the Gcn2-Gcn4 general amino acid control pathway, and this autoregulation seemed to contribute to RM-A resistance.
CITATION STYLE
Miyamoto, Y., Machida, K., Mizunuma, M., Emoto, Y., Sato, N., Miyahara, K., … Miyakawa, T. (2002). Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A. The Journal of Biological Chemistry, 277(32), 28810–28814. https://doi.org/10.1074/jbc.M203827200
Mendeley helps you to discover research relevant for your work.