Adaptive Graph Encoder for Attributed Graph Embedding

186Citations
Citations of this article
172Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Attributed graph embedding, which learns vector representations from graph topology and node features, is a challenging task for graph analysis. Recently, methods based on graph convolutional networks (GCNs) have made great progress on this task. However,existing GCN-based methods have three major drawbacks. Firstly,our experiments indicate that the entanglement of graph convolutional filters and weight matrices will harm both the performance and robustness. Secondly, we show that graph convolutional filters in these methods reveal to be special cases of generalized Laplacian smoothing filters, but they do not preserve optimal low-pass characteristics. Finally, the training objectives of existing algorithms are usually recovering the adjacency matrix or feature matrix, which are not always consistent with real-world applications. To address these issues, we propose Adaptive Graph Encoder (AGE), a novel attributed graph embedding framework. AGE consists of two modules: (1) To better alleviate the high-frequency noises in the node features, AGE first applies a carefully-designed Laplacian smoothing filter. (2) AGE employs an adaptive encoder that iteratively strengthens the filtered features for better node embeddings. We conduct experiments using four public benchmark datasets to validate AGE on node clustering and link prediction tasks. Experimental results show that AGE consistently outperforms state-of-the-artgraph embedding methods considerably on these tasks.

Cite

CITATION STYLE

APA

Cui, G., Zhou, J., Yang, C., & Liu, Z. (2020). Adaptive Graph Encoder for Attributed Graph Embedding. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 976–985). Association for Computing Machinery. https://doi.org/10.1145/3394486.3403140

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free