Multilayer Observations and Modeling of Thunderstorm-Generated Gravity Waves Over the Midwestern United States

15Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

We present multilayer observations and numerical simulations of gravity waves (GWs) generated by a series of Mesoscale Convective Systems over the midwestern United States. Strong semiconcentric GWs were observed and modeled, which couple from their tropospheric sources to the thermosphere, displaying strong nonlinearity indicated by instability, breaking, and formation of turbulent vortices. GWs in the stratosphere display a large range of horizontal scales from 34–400 km; however, the smaller wavelength waves break rapidly in the mesosphere and lower thermosphere. Larger-scale (≥150 km) waves dominate in the thermosphere and display northwestward propagation at 200–300 km altitude, opposing the mean winds. Despite strong molecular viscosity and thermal conductivity in the thermosphere, steepened wave fronts, which may indicate nonlinearity, is identified in 630 nm airglow imagers. The agreement between model and data suggests new opportunities for data-constrained simulations that span multilayer observables, including mesosphere and lower thermosphere-region airglow not captured for this event.

Cite

CITATION STYLE

APA

Heale, C. J., Snively, J. B., Bhatt, A. N., Hoffmann, L., Stephan, C. C., & Kendall, E. A. (2019). Multilayer Observations and Modeling of Thunderstorm-Generated Gravity Waves Over the Midwestern United States. Geophysical Research Letters, 46(23), 14164–14174. https://doi.org/10.1029/2019GL085934

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free