Experimental investigation on the vibration reduction characteristics of an optimized heavy-haul railway low-vibration track

24Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Heavy-haul railway has been developed rapidly in many countries in the world due to its great social and economic benefits. One of the key technologies for heavy-haul railway is the reduction of vibration on the track structures and its surrounding due to impact load induced by the train in service. The vibration behaviors of two kinds of low-vibration track (LVT) systems for heavyhaul railway are investigated in this paper. Firstly, two indoor full-scale low-vibration track models (new LVT and traditional LVT), which include rail, fastener, bearing block, rubber boot, track slab, and foundation base, were constructed according to design drawings. Secondly, the vibration responses of the different track components under the impact excitation of a dropping wheelset were measured. )irdly, the time-domain characteristics of each track component of the two LVTs were compared by the acquired vibration time-history curves. Finally, the frequency-domain distribution was analyzed, and the vibration reduction performance was evaluated by the comprehensive time-frequency analysis results. The results show the new LVT has lower vibration acceleration, shorter duration of vibration period, lower vibration frequency of track components, and most importantly an obvious vibration reduction effect on the ground. Theresearch results are useful to further optimize the design of LVTto reduce the vibration under train impact load.

Cite

CITATION STYLE

APA

Zeng, Z., Wang, J., Yin, H., Shen, S., Shuaibu, A. A., & Wang, W. (2019). Experimental investigation on the vibration reduction characteristics of an optimized heavy-haul railway low-vibration track. Shock and Vibration, 2019. https://doi.org/10.1155/2019/1539564

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free