Modification of Frictional Properties of Hydrogel Surface via Laser Ablated Topographical Micro-Textures

4Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Hydrogels and biological cartilage tissues are highly similar in structure and composition due to their unique characteristics such as high-water content and low friction coefficients. The introduction of hydrogel cartilage can effectively reduce the friction coefficient and wear coefficient of the original bone joint and the implanted metal bone joint (generally titanium alloy or stainless steel), which is considered as a perfect replacement material for artificial articular cartilage. How to accurately regulate the local tribological characteristics of hydrogel artificial cartilage according to patient weight and bone shape is one of the important challenges in the current clinical application field of medical hydrogels. In this study, the mechanism by which micro-pits improve the surface friction properties was studied. Ultraviolet lasers were used to efficiently construct micro-pits with different shapes on a polyvinyl alcohol hydrogel in one step. It was shown that by using such a maskless laser processing, the performance of each part of the artificial cartilage can be customized flexibly and effectively. We envision that the approach demonstrated in this article will provide an important idea for the development of a high-performance, continuous and accurate method for controlling surface friction properties of artificial cartilage.

Cite

CITATION STYLE

APA

Zhou, Z., Chu, Y., Hou, Z., Zhou, X., & Cao, Y. (2022). Modification of Frictional Properties of Hydrogel Surface via Laser Ablated Topographical Micro-Textures. Nanomaterials, 12(22). https://doi.org/10.3390/nano12224103

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free