Nonlinear Stiffness Analysis of Bolted Flange Connection in Cylindrical Shell Structure

7Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

In the cylindrical shell connection structure assembled with bolted flange, the axial load is borne by the shell for compression, but by the bolted flange assembly for tension. When the tensile load is greater than the critical value, the existence of zero contact pressure region between flanges leads to local separation and loss of connection stiffness. which means the axial stiffness is nonlinear. To reveal the influence of structural parameters on the nonlinear stiffness under the preload, the theoretical model of bolted flange connection structure is established by constructing the deformation coordination mechanism of flange and cylindrical shell, based on the elastic thin shell theory and Couchaux improved beam theory. Compared with the finite element model, the theoretical model can correctly predict the initial stiffness and the change of the nonlinear stiffness in the separation stage of the bolted flange connection. By using the theoretical model, the influence of design parameters such as bolt preload, assembly position and flange thickness on the separation condition, separation behavior and nonlinear stiffness in separation stage of bolted flange connection structure is further studied. The variation trend of the separation critical load with the design parameters is obtained.

References Powered by Scopus

Cited by Powered by Scopus

14Citations
7Readers
Get full text
8Citations
N/AReaders
Get full text
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Pan, J., Guan, Z., Zeng, Y., & Sun, W. (2021). Nonlinear Stiffness Analysis of Bolted Flange Connection in Cylindrical Shell Structure. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 57(1), 28–39. https://doi.org/10.3901/JME.2021.01.028

Readers over time

‘21‘22‘23‘24‘2500.511.52

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 1

100%

Readers' Discipline

Tooltip

Business, Management and Accounting 1

100%

Save time finding and organizing research with Mendeley

Sign up for free
0