The photocatalysis process over N-doped TiO2 under visible light is examined for Pb(II) removal. The doping TiO2 with N element was conducted by simple hydrothermal technique and using urea as the N source. The doped photocatalysts were characterized by DRUVS, XRD, FTIR and SEM-EDX instruments. Photocatalysis of Pb(II) through a batch experiment was performed for evaluation of the doped TiO2 activity under visible light, with applying various fractions of N-doped, photocatalyst mass, irradiation time, and solution pH. The research results attributed that N doping has been successfully performed, which shifted TiO2 absorption into visible region, allowing it to be active under visible irradiation. The photocatalytic removal of Pb(II) proceeded through photooxidation to form PbO2. Doping N into TiO2 noticeably enhanced the photo-catalytic oxidation of Pb(II) under visible light irradiation. The highest photocatalytic oxidation of 15 mg/L Pb(II) in 25 mL of the solution could be reached by employing TiO2 doped with 10%w of N content 15 mg, 30 min of time and at pH 8. The doped-photocatalyst that was three times repeatedly used demonstrated significant activity. The most effective process of Pb(II) photo-oxidation under beneficial condition, producing less toxic and handleable PbO2 and good repeatable photocatalyst, suggest a feasible method for Pb(II) remediation on an industrial scale.
CITATION STYLE
Wahyuni, E. T., Rahmaniati, T., Hafidzah, A. R., Suherman, S., & Suratman, A. (2021). Photocatalysis over N-doped TiO2 driven by visible light for Pb(II) removal from aqueous media. Catalysts, 11(8). https://doi.org/10.3390/catal11080945
Mendeley helps you to discover research relevant for your work.