Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy

51Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique-dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20'nm and 10'Î 1/4s. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes.

Cite

CITATION STYLE

APA

Monzel, C., Schmidt, D., Kleusch, C., Kirchenbüchler, D., Seifert, U., Smith, A. S., … Merkel, R. (2015). Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy. Nature Communications, 6. https://doi.org/10.1038/ncomms9162

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free