Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803

59Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Photosynthetic cyanobacteria have attracted a significant attention as promising chassis to produce renewable fuels and chemicals due to their capability to utilizing solar energy and CO2. Notably, the enhancing supply of key precursors like malonyl-CoA would benefit the production of many bio-compounds. Nevertheless, the lacking of genetic tools in cyanobacteria, especially the knockdown strategies for essential pathways, has seriously restricted the attempts to re-direct carbon flux from the central carbohydrate metabolism to the synthesis of bioproducts. Results: Aiming at developing new genetic tools, two small RNA regulatory tools are reported for the model cyanobacterium Synechocystis sp. PCC6803, based on paired termini RNAs as well as the exogenous Hfq chaperone and MicC scaffold (Hfq-MicC) previously developed in Escherichia coli. Both regulatory tools functioned well in regulating exogenous reporter gene lacZ and endogenous glgC gene in Synechocystis sp. PCC6803, achieving a downregulation of gene expression up to 90% compared with wildtype. In addition, the Hfq-MicC tool was developed to simultaneously regulate multiple genes related to essential fatty acids biosynthesis, which led to decreased fatty acids content by 11%. Furthermore, aiming to re-direct the carbon flux, the Hfq-MicC tool was utilized to interfere the competing pathway of malonyl-CoA, achieving an increased intracellular malonyl-CoA abundance up to 41% (~ 698.3 pg/mL/OD730 nm) compared to the wildtype. Finally, the Hfq-MicC system was further modified into an inducible system based on the theophylline-inducible riboswitch. Conclusions: In this study, two small RNA regulatory tools for manipulating essential metabolic pathways and re-directing carbon flux are reported for Synechocystis sp. PCC6803. The work introduces efficient and valuable metabolic regulatory strategies for photosynthetic cyanobacteria.

Cite

CITATION STYLE

APA

Sun, T., Li, S., Song, X., Pei, G., Diao, J., Cui, J., … Zhang, W. (2018). Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 11(1). https://doi.org/10.1186/s13068-018-1032-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free