Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis

11Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

The growing increase in infections by Candida spp., non-albicans, coupled with expressed drug resistance and high mortality, especially in immunocompromised patients, have made candidemia a great challenge. The efficacy of compounds of plant origin with antifungal potential has recently been reported as an alternative to be used. Our objective was to evaluate the mechanism of the antifungal action of isoespintanol (ISO) against clinical isolates of Candida tropicalis. Microdilution assays revealed fungal growth inhibition, showing minimum inhibitory concentration (MIC) values between 326.6 and 500 µg/mL. The eradication of mature biofilms by ISO was between 20.3 and 25.8% after 1 h of exposure, being in all cases higher than the effect caused by amphotericin B (AFB), with values between 7.2 and 12.4%. Flow cytometry showed changes in the permeability of the plasma membrane, causing loss of intracellular material and osmotic balance; transmission electron microscopy (TEM) confirmed the damage to the integrity of the plasma membrane. Furthermore, ISO induced the production of intracellular reactive oxygen species (iROS). This indicates that the antifungal action of ISO is associated with damage to membrane integrity and the induction of iROS production, causing cell death.

Cite

CITATION STYLE

APA

Contreras Martínez, O. I., Angulo Ortíz, A., & Santafé Patiño, G. (2022). Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules, 27(18). https://doi.org/10.3390/molecules27185808

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free