Restoration of macroinvertebrates, fish, and habitats in streams following mining subsidence: replicated analysis across 18 mitigation sites

16Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Human activities have led to declines in stream functioning and stream restoration seeks to reverse this trend. Longwall coal mining, an underground full-extraction method, can cause surface subsidence, affecting streams by creating a series of deep pools that trap sediment, reduce habitat diversity, and impair macroinvertebrate and fish communities. Mining effects on streams must be mitigated to maintain the functions, values, and foreseeable uses of streams. Gate cutting is a procedure that alleviates pooling by reestablishing the stream grade, accompanied by procedures that stabilize the channel, restore substrates, and enhance in-stream and riparian habitats. We evaluated effectiveness of gate cuts at restoring streams affected by subsidence pooling at 18 independent restoration sites over two mines in southwestern Pennsylvania, U.S.A. At each site, sampling stations were established to monitor effects of mining subsidence and its restoration on macroinvertebrates, fish communities, and habitats. We tested for effects of sequential interventions (subsidence and restoration) on biological and habitat variables in a replicated before–after design, controlling for potentially confounding temporal effects (sample month and antecedent effective precipitation). All biological indices and substrate-related habitat indices declined following subsidence but improved following restoration. Macroinvertebrate indicex and taxa richness, substrates, and riparian vegetation continued to improve with time following restoration. Whereas other studies have concluded that biological communities may take many years to respond to restoration, these results indicate that where macroinvertebrate and fish communities are altered by subsidence pooling, they can be effectively restored using gate cuts to pre-mining levels within relatively short time periods.

Cite

CITATION STYLE

APA

Nuttle, T., Logan, M. N., Parise, D. J., Foltz, D. A., Silvis, J. M., & Haibach, M. R. (2017). Restoration of macroinvertebrates, fish, and habitats in streams following mining subsidence: replicated analysis across 18 mitigation sites. Restoration Ecology, 25(5), 820–831. https://doi.org/10.1111/rec.12502

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free