pH-Sensitive Poly(acrylic acid)-g-poly(L-lysine) Charge-Driven Self-Assembling Hydrogels with 3D-Printability and Self-Healing Properties

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We report the rheological behavior of aqueous solutions of a graft copolymer polyampholyte, constituted of polyacrylic acid (PAA) backbone grafted by Poly(L-lysine) (PAA-b-PLL). The graft copolymer self-assembles in aqueous media, forming a three-dimensional (3D) network through polyelectrolyte complexation of the oppositely charged PAA and PLL segments. Rheological investigations showed that the hydrogel exhibits interesting properties, namely, relatively low critical gel concentration, elastic response with slow dynamics, remarkable extended critical strain to flow, shear responsiveness, injectability, 3D printability and self-healing. Due to the weak nature of the involved polyelectrolyte segments, the hydrogel properties display pH-dependency, and they are affected by the presence of salt. Especially upon varying pH, the PLL secondary structure changes from random coil to α-helix, affecting the crosslinking structural mode and, in turn, the overall network structure as reflected in the rheological properties. Thanks to the biocompatibility of the copolymer constituents and the biodegradability of PLL, the designed gelator seems to exhibit potential for bioapplications.

Cite

CITATION STYLE

APA

Kargaki, M. E., Arfara, F., Iatrou, H., & Tsitsilianis, C. (2023). pH-Sensitive Poly(acrylic acid)-g-poly(L-lysine) Charge-Driven Self-Assembling Hydrogels with 3D-Printability and Self-Healing Properties. Gels, 9(7). https://doi.org/10.3390/gels9070512

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free