Abstract
The recent discovery of topological superconductors (TSCs) has sparked enormous interest. The realization of TSC requires a delicate tuning of multiple microscopic parameters, which remains a great challenge. Here, we develop a first-principles approach to quantify realistic conditions of TSC by solving self-consistently Bogoliubov-de Gennes equation based on a Wannier function construction of band structure, in presence of Rashba spin-orbit coupling, Zeeman splitting and electron-phonon coupling. We further demonstrate the power of this method by predicting the Mn-doped GeTe (Ge1-xMnxTe) monolayer—a well-known dilute magnetic semiconductor showing superconductivity under hole doping—to be a Class D TSC with Chern number of −1 and chiral Majorana edge modes. By constructing a first-principles phase diagram in the parameter space of temperature and Mn concentration, we propose the TSC phase can be induced at a lower-limit transition temperature of ~40 mK and the Mn concentration of x~0.015%. Our approach can be generally applied to TSCs with a phonon-mediated pairing, providing useful guidance for future experiments.
Cite
CITATION STYLE
Zhang, X., Jin, K. H., Mao, J., Zhao, M., Liu, Z., & Liu, F. (2021). Prediction of intrinsic topological superconductivity in Mn-doped GeTe monolayer from first-principles. Npj Computational Materials, 7(1). https://doi.org/10.1038/s41524-021-00511-x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.