Human mothers wean their children from breast milk at an earlier developmental stage than do ape mothers, resulting in human children chewing solid and semi-solid foods using the deciduous dentition. Mechanical forces generated by chewing solid foods during the post-weaning period travel through not only the deciduous teeth, but also the enamel caps of the developing permanent teeth within the maxilla and mandible, which are not present in the adult face. The effects of mechanical stress propagating through these very stiff structures have yet to be examined. Based on a heuristic model, we predicted that the enamel of the embedded developing teeth would act to reduce stresses in the surrounding bony elements of the juvenile face. We tested this hypothesis by simulating occlusal loading in a finite element (FE) model of a child's cranium with a complete set of deciduous teeth and the first permanent molars embedded in the bony crypt in the maxilla. We modeled bone and enamel with appropriate material properties and assessed the effect of embedding high-stiffness enamel structures on stress distribution in the juvenile face. Against expectation, the presence of unerupted enamel caps does not affect the magnitude or location of stresses in the juvenile face. Our results do not support the hypothesis that the unerupted secondary teeth act to moderate stresses in the juvenile face. © 2011 Hammond et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
CITATION STYLE
Hammond, A. S., Dumont, E. R., & McCarthy, R. C. (2011). The effect of unerupted permanent tooth crowns on the distribution of masticatory stress in children. PLoS ONE, 6(12). https://doi.org/10.1371/journal.pone.0029121
Mendeley helps you to discover research relevant for your work.