Calcium current block by (-)-pentobarbital, phenobarbital, and CHEB but not (+)-pentobarbital in acutely isolated hippocampal CA1 neurons: Comparison with effects on GABA-activated Cl- current

95Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Block of a voltage-activated Ca2+ channel current by phenobarbital (PHB), 5-(2-cyclohexylideneethyl)-5-ethyl barbituric acid (CHEB), and the optical R(-)- and S(+)-enantiomers of pentobarbital (PB) was examined in freshly dissociated adult guinea pig hippocampal CA1 neurons; the effects of the barbiturates on GABA-activated Cl- current were also characterized in the same preparation. (-)-PB, PHB, and CHEB produced a reversible, concentration-dependent block of the peak Ca2+ channel current (3 mM Ba2+ as the charge carrier) evoked by depolarization from -80 to -10 mV (IC50 values, 3.5, 72, and 118 μM, respectively). In contrast, (+)-PB was nearly inactive at concentrations up to 1 mM. The inhibitory action of PHB was decreased at acid pH, indicating that the dissociated (anionic) form of the molecule is the active species. Block by (-)-PB was voltage dependent with the fractional block increasing at positive membrane potentials; calculations according to the method of Woodhull indicated that the (-)-PB blocking site senses ~40% of the transmembrane electric field. The time course and voltage dependence of activation of the Ca2+ channel current were unaffected by (- )-PB, PHB, and CHEB. The rate of inactivation was enhanced by (-)-PB and CHEB, with the major effect being acceleration of the slow phase of the biexponential decay of the current. GABA-activated Cl- current was potently enhanced by (-)-PB and PHB (EC50 values, 3.4 and 12 μM), whereas (+)-PB was only weakly active. At concentrations of (-)-PB > 100 μM and PHB > 200- 300 μM, Cl- current responses were activated even in the absence of GABA. These results demonstrate that in CA1 hippocampal neurons, PB causes a stereoselective block of a voltage-activated Ca2+ current; PHB is also effective, but at higher concentrations. For (-)-PB, the effect on Ca2+ channel current occurred at similar concentrations as potentiation of GABA responses. In contrast, PHB was more potent as a GABA enhancer than as blocker of Ca2+ current, but the maximal potentiation of GABA responses was 40% of that obtained with (-)-PB. Consequently, the anticonvulsant action of PHB at clinically relevant concentrations may relate to modest enhancement of GABA responses and partial blockade of Ca2+ current, whereas the sedative effects that occur at higher concentrations could reflect stronger Ca2+ current blockade. The powerful sedative-hypnotic action of (-)-PB may reflect greater maximal enhancement of GABA responses in conjunction with strong inhibition of Ca2+ current. The convulsant action of CHEB is unlikely to be related to its effects on the Ca2+ current.

Cite

CITATION STYLE

APA

Ffrench-Mullen, J. M. H., Barker, J. L., & Rogawski, M. A. (1993). Calcium current block by (-)-pentobarbital, phenobarbital, and CHEB but not (+)-pentobarbital in acutely isolated hippocampal CA1 neurons: Comparison with effects on GABA-activated Cl- current. Journal of Neuroscience, 13(8), 3211–3221. https://doi.org/10.1523/jneurosci.13-08-03211.1993

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free