Nonessential heavy metals are toxic to human health. In this study, mercury, a hazardous metal, was detected by colorimetric analysis using Artemisia vulgaris-mediated silver nanoparticles (AgNP) without any modification in an aqueous solution. The UV–vis spectroscopy showed a characteristic SPR band of Ag0 at 418 nm, indicating the formation of AgNPs. The AgNPs were crystalline, with an average size of 7 nm, as calculated from the XRD data. The SEM images revealed the spherical and polycrystalline AgNPs within the agglomerated form. The FTIR spectra elucidated the functional group of the extract attached with the Ag0. The broad, strong peak at 3632 cm−1 indicated the involvement of the -OH group of compounds of extract in reducing silver ions. The peak of EDX spectra around 3 keV confirmed the silver in the nanostructure. A colorimetric method was employed for the heavy metal sensing in the aqueous medium without modification of AgNPs suspension. The obtained AgNPs were found to be selective and highly sensitive toward Hg2+ ions. The AgNPs suspension turned colorless after adding 380 µL of 1 mM Hg2+. The synthesized AgNPs showed the catalytic activity on reduction of 4-nitrophenol in the presence of NaBH4 within 8 min with a rate constant of 1.21 × 10−2 s−1. The outcome of these findings suggests that the application of Artemisia vulgaris influenced AgNPs for metal sensing and green catalysis.
CITATION STYLE
Adhikari, A., Lamichhane, L., Adhikari, A., Gyawali, G., Acharya, D., Baral, E. R., & Chhetri, K. (2022). Green Synthesis of Silver Nanoparticles Using Artemisia vulgaris Extract and Its Application toward Catalytic and Metal-Sensing Activity. Inorganics, 10(8). https://doi.org/10.3390/inorganics10080113
Mendeley helps you to discover research relevant for your work.