Abstract
With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has in-creased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.
Author supplied keywords
Cite
CITATION STYLE
Kim, K. E., Ma, M. R., & Lee, K. W. (2023). Prediction of spatio-temporal AQI data. Communications for Statistical Applications and Methods, 30(2), 119–133. https://doi.org/10.29220/CSAM.2023.30.2.119
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.