Depressed Mood Prediction of Elderly People with a Wearable Band

15Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Depression in the elderly is an important social issue considering the population aging of the world. In particular, elderly living alone who has narrowed social relationship due to bereavement and retirement are more prone to be depressed. Long-term depressed mood can be a precursor to eventual depression as a disease. Our goal is how to predict the depressed mood of single household elderly from unobtrusive monitoring of their daily life. We have selected a wearable band with multiple sensors for monitoring elderly people. Depression questionnaire has been surveyed periodically to be used as the labels. Instead of working with depression patients, we recruited 14 single household elderly people from a nearby community. The wearable band provided daily activity and biometric data for 71 days. From the data, we generate a depressed mood prediction model. Multiple features from the collected sensor data are exploited for model generation. One general model is generated to be used as the baseline for the initial model deployment. Personal models are also generated for model refinement. The general model has a high recall of 80% in an MLP model. Individual models achieved an average recall of 82.7%. In this study, we have demonstrated that we can generate depressed mood prediction models with data collected from real daily living. Our work has shown the feasibility of using a wearable band as an unobtrusive depression monitoring sensor even for elderly people.

Cite

CITATION STYLE

APA

Choi, J., Lee, S., Kim, S., Kim, D., & Kim, H. (2022). Depressed Mood Prediction of Elderly People with a Wearable Band. Sensors, 22(11). https://doi.org/10.3390/s22114174

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free